

## 1. Volatility Index

Volatility Index is a measure of market's expectation of volatility over the near term. Usually, during periods of market volatility, market moves steeply up or down and the volatility index tends to rise. As volatility subsides, volatility index declines. Volatility Index is different from a price index such as NIFTY. The price index is computed using the price movement of the underlying stocks. Volatility Index is computed using the order book of the underlying index options and is denoted as an annualised percentage.

The Chicago Board of Options Exchange (CBOE) was the first to introduce the volatility index for the US markets in 1993 based on S&P 100 Index option prices. In 2003, the methodology was revised and the new volatility index was based on S&P 500 Index options. Since its inception it has become an indicator of how market practitioners think about volatility. Investors use it to gauge the market volatility and base their investment decisions accordingly.

## 2. India VIX\*

India VIX is a volatility index computed by NSE based on the order book of NIFTY Options. For this, the best bid-ask quotes of near and next-month NIFTY options contracts which are traded on the F&O segment of NSE are used. India VIX indicates the investor's perception of the market's volatility in the near term i.e. it depicts the expected market volatility over the next 30 calendar days. Higher the India VIX values, higher the expected volatility and vice-versa.

# 3. India VIX :: computation methodology

India VIX uses the computation methodology of CBOE, with suitable amendments to adapt to the NIFTY options order book.

The formula used in the India VIX calculation is:

$$\sigma^2 = \frac{2}{T} \sum \frac{\Delta K_i}{K_i^2} e^{RT} Q(K_i) - \frac{1}{T} \left[ \frac{F}{K_0} - 1 \right]^2$$

where:

 $\begin{aligned} \sigma & \text{India VIX/100} & \Longrightarrow \quad \text{India VIX} = \sigma \ x \ 100 \\ T & \text{Time to expiration} \\ K_i & \text{Strike price of i}^{\text{th}} \ \text{out-of-the-money option; a call if } K_i > F \text{ and a put if } K_i < F \\ \Delta K_i & \text{Interval between strike prices- half the distance between the strike on either side} \end{aligned}$ 

of K<sub>i</sub>:

<sup>\* &</sup>quot;VIX" is a trademark of Chicago Board Options Exchange, Incorporated ("CBOE") and Standard & Poor's has granted a license to NSE, with permission from CBOE, to use such mark in the name of the India VIX and for purposes relating to the India VIX.



$$\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2}$$

(Note:  $\Delta K$  for the lowest strike is simply the difference between the lowest strike and the next higher strike. Likewise,  $\Delta K$  for the highest strike is the difference between the highest strike and the next lower strike)

| R                  | Risk-free interest rate to expiration                                          |
|--------------------|--------------------------------------------------------------------------------|
| Q(K <sub>i</sub> ) | Midpoint of the bid ask quote for each option contract with strike $K_{\rm i}$ |
| F                  | Forward index taken as the latest available price of NIFTY future contract of  |
|                    | corresponding expiry                                                           |
| $K_0$              | First strike below the forward index level, F.                                 |

Some of these symbols are further explained below.

#### 3.1. Time to expiration (T)

India VIX calculation measures the time to expiration in years, using minutes till expiration. The time to expiration is given by the following expression:

 $T = \{M_{Current day} + M_{Settlement day} + M_{Other days}\} / Minutes in a year Where,$ 

 $M_{Current day}$  = Number of minutes remaining until midnight of the current day (from computation time upto 12.00 am). In the hypothetical example provided in the subsequent pages, it is 3.30 pm up to 12.00 am

 $M_{\text{Settlement day}}$  = Number of minutes from midnight until closing hours of trading (i.e. 3:30 p.m.) on expiry day

 $M_{Other days}$  = Total number of minutes in the days between current day and expiry day excluding both the days

In the hypothetical example provided in the subsequent pages, the near month option has 9 days and next month option has 37 days to expiration. Accordingly, the time to expiration  $(T_1)$  for the near month and  $(T_2)$  for the next month works out to:

 $T_1 = \{510 + 930 + 11520\} / 525,600 = 0.02466$  $T_2 = \{510 + 930 + 51840\} / 525,600 = 0.10137$ 

India VIX uses put and call options in the near and next month expiration, in order to bracket a 30-day calendar period. It may be noted that CBOE VIX rolls to the next and far month



with less than a week to expiration. However, with 3 trading days left to expiry, India VIX "rolls" to the next and far month.

#### 3.2. Risk free Interest Rate (R)

The relevant tenure of NSE MIBOR rate (i.e. 30 days or 90 days) is being considered as riskfree interest rate (i.e.  $R_1$ = 0.0390 and  $R_2$  =0.0465, in case of the hypothetical example considered subsequently) for the respective expiry months of the NIFTY option contracts.

#### 3.3. Determination of forward index level, F

Volatility index is computed using mainly the quotes of the out of the money (OTM) options. The strip of OTM option contracts for computing India VIX could be identified if the at-themoney (ATM) strike is identified. In case of CBOE, the forward index level is arrived at by using the strike price at which the absolute difference between the call and put prices is minimum. NSE has an actively traded, large and liquid NIFTY futures market. Therefore the latest available traded price of the NIFTY futures of the respective expiry month is considered as the forward index level. In the hypothetical example given in the subsequent pages, the latest traded price of NIFTY future for near month ( $F_1$ ) is taken as 5129 and next month ( $F_2$ ) is 5115. This helps in determining the ATM strikes and thus the OTM strikes for the purpose of computation of India VIX.

#### 3.4. Computation of $K_0$

 $K_0$  is the strike price just below the forward index level. This is considered as the at-the money strike (K<sub>0</sub>). In the hypothetical example discussed below, given the value of F<sub>1</sub> and F<sub>2</sub>,  $K_0 = 5100$  for both near and next month contracts. The next step is to consider the order book for selecting the strip of OTM options for both near and next month.

## 4. Computation of India VIX using an example

Consider the following extract of the best bid and offer of the order book of various strikes available for trading in respect of near month NIFTY options. Similar extract shall be taken for the next month as well. To explain the methodology of selection of the strikes, application of cubic spline, etc., the example is initially worked out with the near month options.



| Strike | Call Bid | Call Ask | Put Bid | Put Ask |
|--------|----------|----------|---------|---------|
|        | (Rs.)    | (Rs.)    | (Rs.)   | (Rs.)   |
| 3800   | 1290.10  | 1314.25  | 0.40    | 0.50    |
| 3900   | 1192.95  | 1212.80  | 0.35    | 0.80    |
| 4000   | 1103.00  | 1107.95  | 0.70    | 0.85    |
| 4100   | 1005.00  | 1017.10  | 0.80    | 1.10    |
| 4200   | 894.95   | 913.90   | 1.00    | 1.20    |
| 4300   | 800.00   | 809.95   | 1.20    | 1.70    |
| 4400   | 696.15   | 709.50   | 1.90    | 2.00    |
| 4500   | 601.25   | 609.55   | 3.30    | 3.45    |
| 4600   | 500.70   | 520.00   | 4.45    | 4.50    |
| 4700   | 410.00   | 416.55   | 7.70    | 8.00    |
| 4800   | 316.00   | 321.05   | 13.20   | 13.40   |
| 4900   | 226.00   | 228.00   | 22.50   | 22.65   |
| 5000   | 144.50   | 145.00   | 40.40   | 40.50   |
| 5100   | 79.00    | 79.10    | 74.40   | 74.50   |
| 5200   | 34.75    | 35.00    | 129.00  | 129.95  |
| 5300   | 11.50    | 11.55    | 200.55  | 206.00  |
| 5400   | 3.60     | 3.65     | 286.00  | 307.00  |
| 5500   | 1.70     | 1.95     | 340.00  | 396.00  |
| 5600   | 1.00     | 1.35     | 481.00  | 507.35  |
| 5700   | 0.70     | 1.00     | 577.35  | 606.65  |

## 4.1. Selection of option contracts to be used in the calculation

As stated earlier, India VIX is computed using mainly the quotes of the OTM options. All call options contracts with strike prices greater than  $K_0$  and all put option contracts having strike prices less than  $K_0$  are therefore considered for this purpose. In the example considered above, in respect of the near month, quotes were available for strike prices from 3800 to 5700 with a strike price interval of 100. So in respect of the call options, the quotes of seven strike prices namely, 5100, 5200, 5300, 5400, 5500, 5600 and 5700 (including the ATM strike) are considered for the computation. Similarly, in respect of put options, quotes of 14 strikes from 3800, 3900, etc. to 5100 (including the ATM strike) are considered. Similar exercise shall be done for the next month options as well.

## 4.2. Computation of Mid-price $Q(K_i)$

As seen above, for computation of India VIX,  $Q(K_i)$ , the midpoint of the bid ask quote for each option contract with strike  $K_i$ , is required. In respect of the ATM strike, the average of the mid prices of both call and put options are considered. Before proceeding further with the computation of India VIX, it is checked to see whether the quotes are available/ appropriate.



The strikes with spread greater than 30% of the mid price (of the bid and ask) are considered as not appropriate. The spread is computed as:

Spread = (Ask - Bid) / Average of Bid and Ask

Such of those strikes which are identified as not appropriate as mentioned above, or for which, no quotes are available in the order book, mid-quotes are computed using cubic spline, subject to other conditions explained below.

### 4.2.1. Cubic Spline Fitting

The table given below provides the mid price and spreads of various strikes of call and put options. It may be observed that in respect of four relevant strikes (three for puts and one for call), as highlighted, the quotes are not considered appropriate.

|        | Call    | Call    | Call    | Call   | Put    | Put    | Put    | Dut    |
|--------|---------|---------|---------|--------|--------|--------|--------|--------|
| Strike | Bid     | Ask     | mid     | spread | Bid    | Ask    | mid    | rui    |
|        | (Rs.)   | (Rs.)   | (Rs.)   |        | (Rs.)  | (Rs.)  | (Rs.)  | spread |
| 3800   | 1290.10 | 1314.25 | 1302.18 | 2%     | 0.40   | 0.50   | 0.45   | 22%    |
| 3900   | 1192.95 | 1212.80 | 1202.88 | 2%     | 0.35   | 0.80   | 0.58   | 78%    |
| 4000   | 1103.00 | 1107.95 | 1105.48 | 0%     | 0.70   | 0.85   | 0.78   | 19%    |
| 4100   | 1005.00 | 1017.10 | 1011.05 | 1%     | 0.80   | 1.10   | 0.95   | 32%    |
| 4200   | 894.95  | 913.90  | 904.43  | 2%     | 1.00   | 1.20   | 1.10   | 18%    |
| 4300   | 800.00  | 809.95  | 804.98  | 1%     | 1.20   | 1.70   | 1.45   | 34%    |
| 4400   | 696.15  | 709.50  | 702.83  | 2%     | 1.90   | 2.00   | 1.95   | 5%     |
| 4500   | 601.25  | 609.55  | 605.40  | 1%     | 3.30   | 3.45   | 3.38   | 4%     |
| 4600   | 500.70  | 520.00  | 510.35  | 4%     | 4.45   | 4.50   | 4.48   | 1%     |
| 4700   | 410.00  | 416.55  | 413.28  | 2%     | 7.70   | 8.00   | 7.85   | 4%     |
| 4800   | 316.00  | 321.05  | 318.53  | 2%     | 13.20  | 13.40  | 13.30  | 2%     |
| 4900   | 226.00  | 228.00  | 227.00  | 1%     | 22.50  | 22.65  | 22.58  | 1%     |
| 5000   | 144.50  | 145.00  | 144.75  | 0%     | 40.40  | 40.50  | 40.45  | 0%     |
| 5100   | 79.00   | 79.10   | 79.05   | 0%     | 74.40  | 74.50  | 74.45  | 0%     |
| 5200   | 34.75   | 35.00   | 34.88   | 1%     | 129.00 | 129.95 | 129.48 | 1%     |
| 5300   | 11.50   | 11.55   | 11.53   | 0%     | 200.55 | 206.00 | 203.28 | 3%     |
| 5400   | 3.60    | 3.65    | 3.63    | 1%     | 286.00 | 307.00 | 296.50 | 7%     |
| 5500   | 1.70    | 1.95    | 1.83    | 14%    | 340.00 | 396.00 | 368.00 | 15%    |
| 5600   | 1.00    | 1.35    | 1.18    | 30%    | 481.00 | 507.35 | 494.18 | 5%     |
| 5700   | 0.70    | 1.00    | 0.85    | 35%    | 577.35 | 606.65 | 592.00 | 5%     |



The mid price in respect of these strikes shall be computed using 'cubic spline'. The variation of option quotes against strikes is not linear. Therefore the quotes cannot be fitted using a simple linear interpolation. Hence, the option quotes can be fitted using a polynomial function like cubic spline. India VIX computation uses natural cubic spline for this purpose. This method considers the mid quotes of the other NIFTY option contracts and interpolates for the quotes which are not appropriate/available.

#### 4.2.2. Selection of knot points

In the table given above for the near month, four strikes were identified and highlighted. In respect of these four strikes, as stated before, cubic spline shall be applied, wherever possible. For application of cubic spline, knot points are required on both the sides of the strike for which fitting is to be done. In such of those cases where the strike does not lie within the range of the knot points, cubic spline cannot be used. Strikes remaining after filtration (i.e. strikes which are available or appropriate) are known as knot points. It may be observed that in respect of the call options – the highlighted strike 5700 does not lie within the range of the knot points. Hence in this case cubic spline could not be used. In respect of all the other highlighted strikes, cubic spline shall be used.

### 4.2.3. Equations of Cubic spline and the relationships between the various terms

The general form of the cubic equation in term of coefficient of variable is given as:

$$S_j(x) = a_j(x - x_j)^3 + b_j(x - x_j)^2 + c_j(x - x_j) + d_j$$
 :: Equation (1)

Where,  $S_j(x)$  represents the fitted value,  $x_j$  is the lower limit of each sub-interval (a subinterval consists of two consecutive knot points) and  $a_j$ ,  $b_j$ ,  $c_j$  and  $d_j$  are the coefficients and constant in the equation. In the instant case, taking the example of the highlighted strike of the put option 3900 (x), if we apply the Equation (1),  $S_j(x)$ , i.e. the mid quote for the strike 3900, shall represent the fitted value of this strike, and x and  $x_j$  shall be 3900 and 3800 respectively

To solve Equation (1) and arrive at the fitted value, the following procedure is adopted: The second derivative of Equation (1) is referred to as  $M_{j}$ . Proceeding further and using the

properties of cubic spline, the following relationship shall be arrived:

$$a_{j} = \frac{M_{j+1} - M_{j}}{6h_{j}}; b_{j} = \frac{M_{j}}{2}; c_{j} = \frac{Q(K_{j+1}) - Q(K_{j})}{h_{j}} - \frac{2h_{j}M_{j} + h_{j}M_{j+1}}{6}; d_{j} = Q(K_{j})$$

 $M_1 = M_n = 0$  and j = the number of the selected knot points (from 1 to n)



To solve for  $M_j$ , (j = 2 to n - 1) the following equation and the concept of matrices are used:

$$h_{j-1}M_{j-1} + 2(h_{j-1} + h_j)M_j + h_jM_{j+1} = 6(B_j - B_{j-1})$$
 :: Equation (2)

and  $h_j = x_{j+1} - x_j$  &  $B_j = \frac{Q(K_{j+1}) - Q(K_j)}{h_j}$ 

It may be noted that for the limited purpose of this equation,  $Q(K_j)$  represents the mid quote of the strike  $x_j$ , i.e. the mid quote of 3800 and  $Q(K_{j+1})$ , that of 4000, the two consecutive knot points. It may be further noted that currently the appropriate mid quote for 3900 is not available and being computed using cubic spline.

On ascertaining the value of  $M_j$  using the relationship mentioned above, the values of the terms  $a_j$ ,  $b_j$ ,  $c_j$  and  $d_j$ , are ascertained.

To start with, at each knot points, two values,  $h_j$  and  $B_j$  are computed using the following formula:

| j  | Strike Price | Put Mid quote<br>Q(K <sub>j</sub> ) | $h_j = x_{j+1} - x_j$ | $B_j = \frac{Q(K_{j+1}) - Q(K_j)}{h_j}$ |
|----|--------------|-------------------------------------|-----------------------|-----------------------------------------|
| 1  | 3800         | 0.45                                | 200                   | 0.001625                                |
| 2  | 4000         | 0.78                                | 200                   | 0.001625                                |
| 3  | 4200         | 1.10                                | 200                   | 0.004250                                |
| 4  | 4400         | 1.95                                | 100                   | 0.014250                                |
| 5  | 4500         | 3.38                                | 100                   | 0.011000                                |
| 6  | 4600         | 4.48                                | 100                   | 0.033750                                |
| 7  | 4700         | 7.85                                | 100                   | 0.054500                                |
| 8  | 4800         | 13.30                               | 100                   | 0.092750                                |
| 9  | 4900         | 22.58                               | 100                   | 0.178750                                |
| 10 | 5000         | 40.45                               | 100                   | 0.340000                                |
| 11 | 5100         | 74.45                               | 100                   | 0.550250                                |
| 12 | 5200         | 129.48                              | 100                   | 0.738000                                |
| 13 | 5300         | 203.28                              | 100                   | 0.932250                                |
| 14 | 5400         | 296.50                              | 100                   | 0.715000                                |
| 15 | 5500         | 368.00                              | 100                   | 1.261750                                |
| 16 | 5600         | 494.18                              | 100                   | 0.978250                                |
| 17 | 5700         | 592.00                              | -                     | -                                       |

4.2.4. Computation of  $h_j$  and  $B_j$ 



## 4.2.5. Construction of Equation (2) for each knot

Splines are constructed by connecting the consecutive knot points using cubic equation. As stated above, the cubic equation can be expressed in terms of second derivative  $(M_j)$  using the generalized form given below and earlier referred to as Equation (2)

 $h_{j-1}M_{j-1} + 2(h_{j-1} + h_j)M_j + h_jM_{j+1} = 6(B_j - B_{j-1})$  For knot point j = 2 to n-1 For various knots:

|    | Strike Price     | h M + 2(h + h)M + h M                                   | 6(B - B)           |
|----|------------------|---------------------------------------------------------|--------------------|
| J  | $\mathbf{x}_{j}$ | $n_{j-1}n_{j-1} + 2(n_{j-1} + n_j)n_{j} + n_jn_{j+1}$   | $O(D_j - D_{j-1})$ |
| 2  | 4000             | $200M_1 + 800M_2 + 200M_3$                              | 0.000000           |
| 3  | 4200             | $200M_2 + 800M_3 + 200M_4$                              | 0.015750           |
| 4  | 4400             | 200M <sub>3</sub> +600M <sub>4</sub> +100M <sub>5</sub> | 0.060000           |
| 5  | 4500             | $100M_4 + 400M_5 + 100M_6$                              | -0.019500          |
| 6  | 4600             | $1000M_5 + 400M_6 + 100M_7$                             | 0.136500           |
| 7  | 4700             | $100M_6 + 400M_7 + 100M_8$                              | 0.124500           |
| 8  | 4800             | 100M7+400M8+100M9                                       | 0.229500           |
| 9  | 4900             | $100M_8 + 400M_9 + 100M_{10}$                           | 0.516000           |
| 10 | 5000             | $100M_9 + 400M_{10} + 100M_{11}$                        | 0.967500           |
| 11 | 5100             | $100M_{10} + 400M_{11} + 100M_{12}$                     | 1.261500           |
| 12 | 5200             | $100M_{11} + 400M_{12} + 100M_{13}$                     | 1.126500           |
| 13 | 5300             | $100M_{12} + 400M_{13} + 100M_{14}$                     | 1.165500           |
| 14 | 5400             | $100M_{13} + 400M_{14} + 100M_{15}$                     | -1.303500          |
| 15 | 5500             | $100M_{14} + 400M_{15} + 100M_{16}$                     | 3.280500           |
| 16 | 5600             | $100M_{15} + 400M_{16} + 100M_{17}$                     | -1.701000          |

4.2.6. Solving for  $M_j$  for each knot point using matrix algebra

Expressing the cubic equation of previous step in matrix form we get,



| I | 800 | 200 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M2  |   | 0.000000  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----------|
|   | 200 | 800 | 200 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M3  |   | 0.015750  |
|   | 0   | 200 | 600 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M4  |   | 0.060000  |
|   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M5  |   | -0.019500 |
|   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M6  |   | 0.136500  |
|   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M7  |   | 0.124500  |
|   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | M8  | = | 0.229500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | 0   | M9  |   | 0.516000  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | 0   | M10 |   | 0.967500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | 0   | M11 |   | 1.261500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | 0   | M12 |   | 1.126500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | 0   | M13 |   | 1.165500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | 0   | M14 |   | -1.303500 |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | 100 | M15 |   | 3.280500  |
|   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 400 | M16 |   | -1.701000 |

On solving the matrix multiplication we get the array of variables  $M_j$  value for j = 2 to n-1

| M2  |   | 0.000004  |
|-----|---|-----------|
| M3  |   | -0.000014 |
| M4  |   | 0.000133  |
| M5  |   | -0.000169 |
| M6  |   | 0.000349  |
| M7  |   | 0.000140  |
| M8  | = | 0.000337  |
| M9  |   | 0.000807  |
| M10 |   | 0.001595  |
| M11 |   | 0.002486  |
| M12 |   | 0.001075  |
| M13 |   | 0.004480  |
| M14 |   | -0.007338 |
| M15 |   | 0.011839  |
| M16 |   | -0.007212 |

4.2.7. Computation of the co-efficients of variables of cubic equation

Using the relationship mentioned above and reiterated below, for j = 1 to n-1:

$$a_{j} = \frac{M_{j+1} - M_{j}}{6h_{j}}; b_{j} = \frac{M_{j}}{2}; c_{j} = \frac{Q(K_{j+1}) - Q(K_{j})}{h_{j}} - \frac{2h_{j}M_{j} + h_{j}M_{j+1}}{6}; d_{j} = Q(K_{j})$$

$$\frac{j}{1} \frac{a_{j}}{3.01E - 09} \frac{b_{j}}{0.000000} \frac{c_{j}}{0.001504} \frac{0.450000}{0.450000}$$

$$\frac{2}{2} \frac{-1.51E - 08}{0.000001} \frac{0.00007}{0.000781} \frac{0.000781}{1.100000}$$

$$\frac{1.100000}{4} \frac{0.000001}{0.000067} \frac{0.012635}{0.012635} \frac{1.950000}{0.950000}$$



| 5  | 0.000001  | -0.000085 | 0.010829 | 3.375000   |
|----|-----------|-----------|----------|------------|
| 6  | -3.48E-07 | 0.000174  | 0.019800 | 4.475000   |
| 7  | 3.29E-07  | 0.000070  | 0.044221 | 7.850000   |
| 8  | 0.000001  | 0.000169  | 0.068066 | 13.300000  |
| 9  | 0.000001  | 0.000403  | 0.125263 | 22.575000  |
| 10 | 0.000001  | 0.000798  | 0.245381 | 40.450000  |
| 11 | -0.000002 | 0.001243  | 0.449464 | 74.450000  |
| 12 | 0.000006  | 0.000537  | 0.627513 | 129.475000 |
| 13 | -0.000020 | 0.002240  | 0.905235 | 203.275000 |
| 14 | 0.000032  | -0.003669 | 0.762298 | 296.500000 |
| 15 | -0.000032 | 0.005919  | 0.987324 | 368.000000 |
| 16 | 0.000012  | -0.003606 | 1.218658 | 494.175000 |

(It may be noted that some of the values which are very small are represented in terms of 'E')

### 4.2.8. Mid value of the highlighted strikes

The mid values of the highlighted strikes are now arrived at using the values ascertained above and substituting them in the Equation (1) as mentioned above and reiterated below:  $S_j(x) = a_j(x-x_j)^3 + b_j(x-x_j)^2 + c_j(x-x_j) + d_j$ 

| х    | Equation                                                                      | Fitted value |
|------|-------------------------------------------------------------------------------|--------------|
| 3900 | 3.01E-09 (3900-3800)^3 + 0.00 (3900-3800)^2 + 0.001504(3900-3800) + 0.45      | 0.60         |
| 4100 | -1.51E-08 (4100-4000)^3 + 0.000002(4100-4000)^2 + 0.001866(4100-4000) + 0.775 | 0.96         |
| 4300 | 1.23E-07 (4300-4200)^3 - 0.000007(4300-4200)^2 + 0.000781(4300-4200) + 1.1    | 1.23         |

We get the following cubic equations joining the relevant consecutive knot points,

Similarly, cubic spline is constructed separately for next month - both call and put contracts. Placed below is the order book snap shot of the next month. As may be observed below, in respect of none of the strikes, the spread is above 30% for both call and put contracts. Hence the cubic spline shall not be used for the purpose of fitting the mid quotes in respect of any strikes.

| Strike | Call Bid | Call Ask | Call mid | Call spread | Put Bid | Put Ask | Put mid | Put spread |
|--------|----------|----------|----------|-------------|---------|---------|---------|------------|
| 4000   | 1100.15  | 1110.00  | 1105.08  | 1%          | 5.90    | 6.50    | 6.20    | 10%        |
| 4100   | 1006.25  | 1026.90  | 1016.58  | 2%          | 7.15    | 8.50    | 7.83    | 17%        |
| 4200   | 905.15   | 931.15   | 918.15   | 3%          | 10.00   | 10.70   | 10.35   | 7%         |
| 4300   | 809.15   | 844.75   | 826.95   | 4%          | 13.55   | 14.00   | 13.78   | 3%         |
| 4400   | 713.10   | 732.85   | 722.98   | 3%          | 18.00   | 18.75   | 18.38   | 4%         |
| 4500   | 615.70   | 668.35   | 642.03   | 8%          | 22.35   | 25.00   | 23.68   | 11%        |
| 4600   | 526.80   | 572.05   | 549.43   | 8%          | 32.00   | 33.30   | 32.65   | 4%         |
| 4700   | 444.35   | 464.15   | 454.25   | 4%          | 41.00   | 45.00   | 43.00   | 9%         |
| 4800   | 366.60   | 408.60   | 387.60   | 11%         | 61.50   | 62.00   | 61.75   | 1%         |
| 4900   | 300.00   | 307.30   | 303.65   | 2%          | 84.55   | 86.50   | 85.53   | 2%         |
| 5000   | 231.00   | 232.00   | 231.50   | 0%          | 116.00  | 117.00  | 116.50  | 1%         |
| 5100   | 171.10   | 171.50   | 171.30   | 0%          | 156.00  | 158.00  | 157.00  | 1%         |
| 5200   | 120.05   | 121.80   | 120.93   | 1%          | 203.00  | 209.35  | 206.18  | 3%         |
| 5300   | 79.60    | 80.50    | 80.05    | 1%          | 252.85  | 265.00  | 258.93  | 5%         |
| 5400   | 48.10    | 48.50    | 48.30    | 1%          | 322.45  | 345.65  | 334.05  | 7%         |
| 5500   | 29.00    | 32.00    | 30.50    | 10%         | 405.00  | 437.10  | 421.05  | 8%         |
| 5600   | 15.90    | 19.85    | 17.88    | 22%         | 477.85  | 509.00  | 493.43  | 6%         |
| 5700   | 9.15     | 9.75     | 9.45     | 6%          | 575.25  | 609.00  | 592.13  | 6%         |

NSE NVIX

For the purposes of India VIX computation, the cubic spline shall be constructed only when the data set has at least 3 knot points from option contracts which are out-of the money or at the money. If the required number of knot points in near or next month is not available, then the spline construction process is not undertaken and volatility is not computed for the corresponding month.

## 5. Computation of Volatility

The relevant options strikes were identified and indicated above. The appropriate mid quotes (using the actual/ fitted ones, as the case may be) were ascertained as outlined above. The values in respect of the near month are reiterated as below:

| Near Month Options         |                |               |                    |  |  |  |  |  |  |  |
|----------------------------|----------------|---------------|--------------------|--|--|--|--|--|--|--|
| <b>Option Strike Price</b> | Mid Call Quote | Mid Put Quote | Q(K <sub>i</sub> ) |  |  |  |  |  |  |  |
| 3800                       |                | 0.45          | 0.45               |  |  |  |  |  |  |  |
| 3900                       |                | 0.6           | 0.6                |  |  |  |  |  |  |  |
| 4000                       |                | 0.78          | 0.78               |  |  |  |  |  |  |  |
| 4100                       |                | 0.96          | 0.96               |  |  |  |  |  |  |  |
| 4200                       |                | 1.1           | 1.1                |  |  |  |  |  |  |  |
| 4300                       |                | 1.23          | 1.23               |  |  |  |  |  |  |  |
| 4400                       |                | 1.95          | 1.95               |  |  |  |  |  |  |  |
| 4500                       |                | 3.38          | 3.38               |  |  |  |  |  |  |  |
| 4600                       |                | 4.48          | 4.48               |  |  |  |  |  |  |  |
| 4700                       |                | 7.85          | 7.85               |  |  |  |  |  |  |  |
| 4800                       |                | 13.3          | 13.3               |  |  |  |  |  |  |  |
| 4900                       |                | 22.58         | 22.58              |  |  |  |  |  |  |  |
| 5000                       |                | 40.45         | 40.45              |  |  |  |  |  |  |  |
| 5100                       | 79.05          | 74.45         | 76.75              |  |  |  |  |  |  |  |
| 5200                       | 34.88          |               | 34.88              |  |  |  |  |  |  |  |
| 5300                       | 11.53          |               | 11.53              |  |  |  |  |  |  |  |
| 5400                       | 3.63           |               | 3.63               |  |  |  |  |  |  |  |
| 5500                       | 1.83           |               | 1.83               |  |  |  |  |  |  |  |
| 5600                       | 1.18           |               | 1.18               |  |  |  |  |  |  |  |

NSE NVIX

In respect of  $K_0$  (ATM), it may be noted that both the put and call option contracts are considered and the average of the mid price of the quotes of both the call and put are taken. In respect of all the other strikes, either a put or a call is considered for the computation of India VIX. In the example above, the mid-quote used for the 5100 strike in the near term is therefore the average of the mid quotes of both the call and put, i.e., (79.05 + 74.45)/2 = 76.75.



| Next Month Options         |                |               |                    |  |  |  |  |  |  |  |  |
|----------------------------|----------------|---------------|--------------------|--|--|--|--|--|--|--|--|
| <b>Option Strike Price</b> | Mid Call Quote | Mid Put Quote | Q(K <sub>i</sub> ) |  |  |  |  |  |  |  |  |
| 4000                       |                | 6.20          | 6.20               |  |  |  |  |  |  |  |  |
| 4100                       |                | 7.83          | 7.83               |  |  |  |  |  |  |  |  |
| 4200                       |                | 10.35         | 10.35              |  |  |  |  |  |  |  |  |
| 4300                       |                | 13.78         | 13.78              |  |  |  |  |  |  |  |  |
| 4400                       |                | 18.38         | 18.38              |  |  |  |  |  |  |  |  |
| 4500                       |                | 23.68         | 23.68              |  |  |  |  |  |  |  |  |
| 4600                       |                | 32.65         | 32.65              |  |  |  |  |  |  |  |  |
| 4700                       |                | 43.00         | 43.00              |  |  |  |  |  |  |  |  |
| 4800                       |                | 61.75         | 61.75              |  |  |  |  |  |  |  |  |
| 4900                       |                | 85.53         | 85.53              |  |  |  |  |  |  |  |  |
| 5000                       |                | 116.50        | 116.50             |  |  |  |  |  |  |  |  |
| 5100                       | 171.30         | 157.00        | 164.15             |  |  |  |  |  |  |  |  |
| 5200                       | 120.93         |               | 120.93             |  |  |  |  |  |  |  |  |
| 5300                       | 80.05          |               | 80.05              |  |  |  |  |  |  |  |  |
| 5400                       | 48.30          |               | 48.30              |  |  |  |  |  |  |  |  |
| 5500                       | 30.50          |               | 30.50              |  |  |  |  |  |  |  |  |
| 5600                       | 17.88          |               | 17.88              |  |  |  |  |  |  |  |  |
| 5700                       | 9.45           |               | 9.45               |  |  |  |  |  |  |  |  |

In respect of the next month, the values are:

The volatility for both near month and next month options are then calculated by applying the formula for calculating the India VIX with time to expiration of  $T_1$  and  $T_2$ , respectively

$$\sigma_{1}^{2} = \frac{2}{T_{1}} \sum \frac{\Delta K_{i}}{K_{i}^{2}} e^{R_{1}T_{1}} Q(K_{i}) - \frac{1}{T_{1}} \left[ \frac{F_{1}}{K_{0}} - 1 \right]^{2} - \text{Equation (3)}$$
  
$$\sigma_{2}^{2} = \frac{2}{T_{2}} \sum \frac{\Delta K_{i}}{K_{i}^{2}} e^{R_{2}T_{2}} Q(K_{i}) - \frac{1}{T_{2}} \left[ \frac{F_{2}}{K_{0}} - 1 \right]^{2} - \text{Equation (4)}$$

The contribution of a single option to India VIX value is proportional to the quote of that option and inversely proportional to the option contract's strike price. For example, the contribution of the near month 3800 put contract is given by  $\frac{\Delta K_{3800PUT}}{K_{3800PUT}^2} e^{R_1 T_1} Q$ (3800 PUT)

Generally,  $\Delta K_i$  is half the distance between the strike on either side of  $K_i$ , but at the upper and lower edges of any given strip of options,  $\Delta K_i$  is simply the difference between  $K_i$  and



the adjacent strike price. In this case, 3800 is the lowest strike in the strip of near month options and 3900 happens to be the adjacent strike. Therefore,  $\Delta K_{3800 PUT} = 100$  (i.e. 3900 – 3800), and

$$\frac{\Delta K_{3800PUT}}{K_{3800PUT}^2} e^{R_1 T_1} Q(3800 \text{ PUT}) = \frac{100}{3800^2} * e^{(0.039 * 0.02466)} * (0.45) = 0.000003$$

The detailed computation in respect of each strike and the summation of the values are as under:

| Ontion Strike |                         |           | Contribution by strike                                                   |
|---------------|-------------------------|-----------|--------------------------------------------------------------------------|
| Price         | Option Type             | Mid-quote | $\frac{\Delta \mathbf{K}_i}{\mathbf{K}_i^2} e^{R_1 T_1} Q(\mathbf{K}_i)$ |
| 3800          | Put                     | 0.45      | 0.000003                                                                 |
| 3900          | Put                     | 0.60      | 0.000004                                                                 |
| 4000          | Put                     | 0.78      | 0.000005                                                                 |
| 4100          | Put                     | 0.96      | 0.000006                                                                 |
| 4200          | Put                     | 1.10      | 0.000006                                                                 |
| 4300          | Put                     | 1.23      | 0.000007                                                                 |
| 4400          | Put                     | 1.95      | 0.000010                                                                 |
| 4500          | Put                     | 3.38      | 0.000017                                                                 |
| 4600          | Put                     | 4.48      | 0.000021                                                                 |
| 4700          | Put                     | 7.85      | 0.000036                                                                 |
| 4800          | Put                     | 13.30     | 0.000058                                                                 |
| 4900          | Put                     | 22.58     | 0.000094                                                                 |
| 5000          | Put                     | 40.45     | 0.000162                                                                 |
|               | Call/Put                | 76.75     | 0.000295                                                                 |
| 5100          | Average                 |           |                                                                          |
| 5200          | Call                    | 34.88     | 0.000129                                                                 |
| 5300          | Call                    | 11.53     | 0.000041                                                                 |
| 5400          | Call                    | 3.63      | 0.000012                                                                 |
| 5500          | Call                    | 1.83      | 0.000006                                                                 |
| 5600          | Call                    | 1.18      | 0.000004                                                                 |
|               | $\sum \frac{\Delta}{H}$ | 0.000916  |                                                                          |



This summation value for the near month options is multiplied by  $2/T_1$  as given in the above Equation (3):

 $\sigma_1^2 = 0.000916*2/0.02466 - 1/0.02466*[(5129/5100)-1]^2 = 0.072979$ 

Similarly we compute the volatility for next month,

| Option                                             | Option Type      | Mid-quote | Contribution by strike                                                   |
|----------------------------------------------------|------------------|-----------|--------------------------------------------------------------------------|
| Strike Price                                       |                  |           | $\frac{\Delta \mathbf{K}_i}{\mathbf{K}_i^2} e^{R_2 T_2} Q(\mathbf{K}_i)$ |
| 4000                                               | Put              | 6.20      | 0.000039                                                                 |
| 4100                                               | Put              | 7.83      | 0.000047                                                                 |
| 4200                                               | Put              | 10.35     | 0.000059                                                                 |
| 4300                                               | Put              | 13.78     | 0.000075                                                                 |
| 4400                                               | Put              | 18.38     | 0.000095                                                                 |
| 4500                                               | Put              | 23.68     | 0.000117                                                                 |
| 4600                                               | Put              | 32.65     | 0.000155                                                                 |
| 4700                                               | Put              | 43.00     | 0.000196                                                                 |
| 4800                                               | Put              | 61.75     | 0.000269                                                                 |
| 4900                                               | Put              | 85.53     | 0.000358                                                                 |
| 5000                                               | Put              | 116.50    | 0.000468                                                                 |
| 5100                                               | Call/Put Average | 164.15    | 0.000634                                                                 |
| 5200                                               | Call             | 120.93    | 0.000449                                                                 |
| 5300                                               | Call             | 80.05     | 0.000286                                                                 |
| 5400                                               | Call             | 48.30     | 0.000166                                                                 |
| 5500                                               | Call             | 30.50     | 0.000101                                                                 |
| 5600                                               | Call             | 17.88     | 0.000057                                                                 |
| 5700                                               | Call             | 9.45      | 0.000029                                                                 |
| $\sum \frac{\Delta K_i}{K_i^2} e^{R_2 T_2} Q(K_i)$ |                  |           | 0.003600                                                                 |

This summation value for the next month options is multiplied by  $2/T_2$  as given in the above Equation (4):

 ${\sigma_2}^2 = 0.003600*2/0.10137 - 1/0.10137*[(5115/5100)-1]^2 = 0.070942$ 



# 6. Computation of India VIX from the Volatilities

India VIX ( $\sigma$ \*100) value is arrived at by interpolating the near and next month sigma ( $\sigma_1$  and  $\sigma_2$ ) values. If either of the month's sigma value is not computed then the previous tick's sigma value for the corresponding month is carried forward for computation. However, if India VIX is not computed at least once for the day then the previous India VIX value is carried forward.

 $\sigma_1$  and  $\sigma_2$  are interpolated to arrive at a single value with a constant maturity of 30 days to expiration. The formula used for interpolation is as under:

$$\sigma = \sqrt{\left\{T_1 \sigma_1^2 \left[\frac{N_{T_2} - N_{30}}{N_{T_2} - N_{T_1}}\right] + T_2 \sigma_2^2 \left[\frac{N_{30} - N_{T_1}}{N_{T_2} - N_{T_1}}\right]\right\}} \times \frac{N_{365}}{N_{30}}$$

Where,

 $NT_1$  (number of minutes to expiration of the near month options) = 12960  $NT_2$  (number of minutes to expiration of the next month options) = 53280  $N_{30}$  = (number of minutes in 30 days) =43200  $N_{365}$  = (number of minutes in a 365-day year) = 525600

Using the above equation,  $\sigma = 0.2666$  and India VIX = 100 \*  $\sigma = 26.66$ 

#### Disclaimer

Market conditions can lead to substantial profit or loss. Investors are advised to seek adequate product and market knowledge as well as proper investment advice before trading futures or options contracts or other products based on the India VIX or otherwise relying on the India VIX for any purpose. The material provided here is for general information purposes only. While care has been taken to ensure accuracy, the information is furnished to reader with no warranty as to the accuracy or completeness of its contents and on condition that neither the information nor any omissions or errors in the information nor any change subsequently made in the information shall be made the basis for any claim, demand or cause for action. "Standard & Poor's" and "S&P" are trademarks of The McGraw-Hill Companies, Inc. ("Standard & Poor's") and have been licensed for use by India Index Services & Products Limited, which has sublicensed such marks to NSE. The S&P CNX Nifty Index is not compiled, calculated or distributed by Standard & Poor's and Standard & Poor's makes no representation regarding the advisability of investing in products that are based on such Index. "VIX" is a trademark of Chicago Board Options Exchange, Incorporated ("CBOE") and Standard & Poor's has granted a license to NSE, with permission from CBOE, to use such mark in the name of the India VIX and for purposes relating to the India VIX. India VIX is not compiled, calculated, distributed, sponsored, endorsed or promoted by Standard & Poor's or CBOE and neither Standard & Poor's nor CBOE makes any representation regarding the advisability of investing in products that are based on such Index or otherwise relying on such Index for any purpose.